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Inviscid flow about a cylinder rising 
to a free surface 
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The problem of calculating nonlinear two-dimensional free-surface potential flow 
about a circular cylinder rising to a free surface is solved numerically. The deeply- 
submerged circular cylinder is accelerated smoothly from rest to a uniform vertical 
velocity. A boundary/integral-equation method is used to obtain free-surface eleva- 
tions and streamlines about the rising cylinder for several final speeds. Results, 
including pressure forces, are compared with a cylinder rising to a rigid wall and a 
cylinder moving in an infinite fluid. 

1. Introduction 
Substantial progress has been made in the simulation of fully nonlinear two- 

dimensional potential flows about objects moving near a free surface. In particular, 
Haussling & Coleman (1979) have studied water waves generated by a horizontally 
accelerated circular cylinder, and Baker, Meiron & Orszag (1981) have simulated the 
flow about a translating ellipse under a free surface. Lin, Newman & Yue (1984) have 
numerically modelled flows about bodies moving in a free surface and have paid 
particular attention to the intersection of the free surface with the bodies. Greenhow 
& Lin (1985) have used the method of Vinje & Brevig (1981) and treated the 
intersection of the free surface and the body in a manner suggested by Lin et al. 
(1984). These papers dealing with the intersection point are heading toward a local 
jet-flow model of the flow near the free-surface/body intersection which is to be 
matched with the potential flow solution elsewhere in the fluid. This model of singular 
flow near the intersection point is not yet complete. 

This paper describes the results of a numerical study of the potential flow about 
a circular cylinder as it rises and nears a free surface. The cylinder is accelerated to 
a uniform vertical velocity and moves to within a distance from the free surface which 
is a small fraction of its diameter. This problem contains a much stronger body/free- 
surface interaction than those treated by Haussling & Coleman (1979) and Baker 
et al. (1981). Yet it avoids the still to be overcome free-surface/body intersection 
problems. This work covers the initial part of the cylinder-exit problem studied 
experimentally by Greenhow & Lin (1983). The flow is studied for various speeds of 
approach to the surface. Streamlines, the pressure distribution on the cylinder, and 
the total force on the cylinder are compared for the different approach speeds. The 
results are compared with the potential flow about a cylinder rising to a rigid wall 
and about a cylinder moving in an infinite fluid. 
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FIQIJRE 1.  Definition Sketch. 

2. Mathematical formulation 
The problem considered is the calculation of the two-dimensional flow about a 

circular cylinder as it rises towards a free surface. The cylinder is accelerated smoothly 
from rest to a final vertical velocity. The fluid is assumed to be incompressible, 
inviscid, initially a t  rest, and to fill a time-dependent region which is infinite in depth 
and lateral extent. In  addition, the fluid motion is assumed to be irrotational and 
surface tension is neglected. A Cartesian coordinate system is fixed so that the y-axis 
point vertically upward, the x-axis lies in the undisturbed free-surface, and the origin 
lies directly above the centre of the cylinder (figure 1). 

All variables have been non-dimensionalized. Lengths have been scaled by the 
radius R of the cylinder; velocities, by the final speed U of the cylinder; and time, 
by RlU. The location of the free-surface boundary aQF is unknown and must be 
computed as part of the solution. The motion of the cylinder, whose boundary is XI,, 
is prescribed. The assumptions guarantee the existence of a velocity potential # in 
the time-dependent fluid region Q(t ) .  This potential satisfies an initial/boundary- 
value problem given by the following equations, which have been used by Longuet- 
Higgins & Cokelet (1976) and others: 

$,, + $ry = 0 in Q(t ) ,  (1) 

Vq5.n = y,(t)n, on aQ,, ( 5 )  

$, = 0 for x = f co, (2, y) in Q(t ) ,  (6) 
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q5y=0 for--oO<x<oO, y = - m ,  (7) 

$( t  = 0) = 0 for (x, y) in Q(t = 0), (8)  

y(t = 0) = 0 on aQ,(t = 0). (9) 

The subscripts x and y denote partial differentiation with respect to these variables, 
and the derivative D/Dt denotes a material derivative. The Froude number is 
Fr = U/(gR)i.  The vector n = (nz, ny) is the unit normal vector at the cylinder 
directed into the fluid. The centre of the cylinder is at (x = 0, y = y,(t)) in which 

Y,(O) = -6 (10) 

(11) 

Q,(t) = 1 fort 3 1, (12) 

y,(t) = sin (@t)  for 0 < t < I ,  

where d is the initial depth of the centre of the cylinder. The pressure on the cylinder 
is obtained from Bernoulli’s equation 

in which the subscript t denotes partial differentiation with respect to t and p is the 
pressure normalized by pu2 where p is the fluid density. 

For comparison with the free-surface flow, the two-dimensional potential flow is 
computed for the circular cylinder approaching a rigid wall. For this case the 
initial/boundary-value problem for the velocity potential is still specified by (l), 
(5)-(8), and (10)-(12), but the free-surface conditions (2)-(4) are replaced by the wall 
condition 

& = O  a t y = O .  (14) 

The formula for the pressure on the cylinder remains the same. 

it is obtained from (13) by excluding the last term: 
The dynamic pressure pd is obtained by excluding the hydrostatic pressure. Thus, 

P d  = -$ t -a ($ ;+$ i ) .  (15) 

The total vertical force F,  normalized by p V R ,  is given in terms of the dynamic 
pressure by the formula 

R 2n 

p d ( e )  sine do+-, 
F=-J 0 Fr2 

in which the first term represents the dynamic force acting on the cylinder and the 
second term is the buoyancy force. 

3. Method of solution 
The initial/boundary-value problem is solved by the generalized vortex method 

of Baker, Meiron t Orszag (1981, 1982). In  this method, the velocity potential is 
represented in terms of a distribution of vortices on the free surface and a distribution 
of sources on the cylinder. Specifically, the free surface and the vortex distribu- 
tion on it are parameterized in terms of the time t and a parameter e as 
zF(e, t )  = z F ( e ,  t )  +iy,(e, t )  and r(e, t ) ;  the cylinder contour and the source distribution 
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on it are parameterized in terms o f t  and an angle 0 as zB(8, t )  = zB(O, t)+iyB(O, t)  
and (r(0, t )  in which 

zB(8, 1) = cos8, (17) 

(18) 

Here - 00 < e < co, 0 < 0 < 271, and t 2 0. Thus, the complex velocity potential 
w(z)  = $+ill. at z = z+iy in the fluid region Q(t )  is written as 

~ ~ ( 0 ,  t )  = yc(t) + sin 0.  

W ( Z )  = - y(e’) hg(Z-ZF(e’)) de’+- CT(0’) log(z-zzg(@’)) d0‘, (19) 
2x1 Irn -a 2’, J: 

where $ is the velocity potential and is the stream function. A principal-value 
velocity q(e) = u(e)+iv(e), in which u(e) is the z-component and v(e) is the y- 
component of the velocity, is defined at any point e on the free surface by the equation 

where the asterisk denotes complex conjugation. The physical velocity of a point 
zF(e, t)  on the free surface is defined by 

and coincides with the fluid velocity at  the point. The subscript e denotes partial 
differentiation with respect to e. Application of the dynamic free-surface boundary 
condition (4) and the body boundary condition (5 )  to (19) leads to the two evolution 
equations for y and CT : 

The functions qe and aq*/at are obtained from (20). Equation (6) is satisfied if 

y(e) = 0, (24) 

for e = & 00. The initial/boundary-value problem defined by (1)-(9) is solved if the 
functions Z, and y along the free surface and the function CT along the cylinder contour 
are obtained as functions of time. These functions satisfy a system of three differential 
evolution equations, parameterized by e and 0, consisting of (21) for the free surface 
and equations for the vortex strength and source strength in the form of Fredholm 
integral equations of the second kind, equations (22) and (23). The corresponding 
initial conditions are 

zF(e, t = 0) = e, 

y(e, t = 0) = 0, 

a(e, t = 0) = 0. 

(25) 

(26) 

(27) 
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Since the free surface is infinitely long, it is necessary to introduce wave damping 
to reduce to a finite length the part for which computation is required. The free-surface 
vortex density and height are set to zero outside the region 1x1 < zR, and in the region 
1x1 < zR the free-surface position and the vortex density along the free surface obey 
the modified evolution equations 

-(e) ax, = R,; 
at 

Rl-iIl is the right-hand side of (21), and R, is the right-hand side of (22). Here DF 
is zero if 1x1 < zD and D,  is non-zero if zD < 1x1 < zR. Thus there is a region 121 < zD 
in which (28)-(30) reduce to the undamped equations (21) and (22), a region 
z,, < 1x1 < zR where waves entering from 1x1 < zD are damped, and a region 121 > zR 
where the water remains undisturbed. Computations can then be restricted to 
1x1 < zR. In  all cases of computations with a free surface present, zR = 10.0, zD = 7.5, 
and D,  = 0.8. This damping is different from that used by Baker et al. (1981) only 
in that the damping factor D,  IlzF(e)l -zD1 varies linearly instead of quadratically, 
as is the case with their damping factor u(z). The damping terms in (29) and (30) are 
continuous in the truncated region 121 < zR. For this free-surface flow problem, the 
time for which the flow is simulated is the finite time it takes the cylinder to rise to 
the free surface. Thus one does not expect significant waves to reach the damping 
regions. 

For the case of a rigid wall replacing the free surface, the complex velocity potential 
is expressed solely in terms of a layer of sources on the cylinder and another layer 
of sources on the reflection of the cylinder about the wall: 

1 2x 

W ( Z )  = 'j U(e' )  lOg(Z-ZB(8')) de'+,J a(#) lOg(Z-Zg(8')) de'. (31) 
2Z 0 0 

The wall boundary condition, equation (14), is then automatically satisfied. The 
evolution equation for the source strength along the cylinder contour is derived from 
(5) and assumes the form 

The initial/boundary-value problem for the case of a rigid wall is solved once the 
source strength u along the cylinder confour has been determined as a function of 
time. This function is sought as the solution of the parameterized differential equation 
(32) which is a Fredholm integral equation of the second kind for the time derivative 
of the source strength. The initial condition is specified by (27). 
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The functions +(e, t )  and y(e, t )  are discretized spatially by defining the functions 

(ZF)j(t) ( x F ) j ( t )  +i(YF)j(t) = z F ( e j ,  t ) ,  (33) 
and 

Yj(4 = Y(e,, t ) ,  (34) 
where t 2 0 and j = 1, 2, . .., N. The initial definition of these discretized functions 
is given by 

(35) 

The increment Ae and N, an odd integer, are chosen so that e,  = - x R  and eN = xR. 
The functions zB(B, t )  and g(0, t )  are discretized analogously by defining 

and 
(37) 

(38) 

for k = 1,  2, ..., M. Here e k  are given by 

and ( Z B ) k ( t )  are equal to 
e k  = (k-$ (2nlM), (39) 

( Z B ) k ( t )  = zB(ek,  t ) *  (40) 

For each j, the functions ( zF)$( t )  and y,(t) obey ordinary differential equations 
obtained from (28)-(30) by discretizing the right-hand sides spatially. The integrals 
are replaced by sums based on trapezoidal quadrature, and spatial derivatives with 
respect to e are computed using a cubic-spline technique. Typical of this discretization 
is the replacement of the principal-value integral 

f"l, ZF;;' z:(ir) 

found in (20) by the sum 

in which e and e' are associated with the indices j and k respectively. The summation 
is over the even values of k if j is odd and over the odd values of k i f j  is even. Similarly, 
regular integrals such as 

de' 
* c T ( e ' )  1 zF(e) -zB(e')  

in (20) are replaced by sums of the form 

For each k ,  the function (Tk( t )  obeys an ordinary differential equation obtained from 
(23) or, for the case of the rigid wall, equation (32). The ordinary differential equations 
for y,(t) and g k ( t )  are Fredholm integral equations of the second kind with 
eigenvalues that guarantee the convergence of an iterative solution technique for 
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their derivatives (Baker et al. 1982). The rate of convergence depends on the depth 
of the cylinder with the convergence becoming slower as the cylinder moves toward 
the free surface. Convergence, however, can be maintained by reducing the timestep 
and thus ensuring that the initial estimates of the solutions of the integral equations 
are better and require fewer iterations to achieve convergence. The functions (zB)k(t) 
are calculated from y,(t), which is defined by (lo)-( 12). The result of the discretization 
process is 4 coupled nonlinear system of ordinary differential equations for the 
functions (zF),(t) ,  y,(t), and ck(t). When the free surface is replaced by a rigid wall, 
only a,(t) appears in the system of equations. There are 3N+M equations in this 
system when a free surface is present and M equations for the rigid-wall case. 

The initial depth d of the circular cylinder, found in (lo), was set equal to 5. This 
is deep enough so that the free surface is essentially undisturbed by starting 
transients. The number of free-surface points N was set to 321; the free-surface 
increment Ae is 0.0625. The cylinder contour was discretized in such a way that the 
number of sources on the cylinder, M ,  was 100. In  this arrangement the initial spacing 
between sources on the cylinder and vortices on the free surface was about the same. 

Two methods have been used to solve the system of differential equations. One is 
an implicit fourth-order Adams-Bashforth-Moulton predictor-corrector scheme 
with a fixed timestep. The first few timesteps are treated with an explicit fourth-order 
Rung-Kutta technique. The other method of solving the system of equations 
numerically is to use the subroutine DEABM (Shampine & Watts 1979). DEABM 
is a variable-order, variable-step integrator that determines the solution for each step 
in such a way that specified local error criteria are met. Thus one can use DEABM 
to determine a solution using timesteps of an appropriate size so that the solution 
meets specified error criteria without knowing in advance what that step size should 
be. The information gained about the appropriate step size can be used to recompute 
the solution using the fixed-step, fixed-order method. When a rigid wall replaced the 
free surface, only the subroutine DEABM was used. 

With either method of time integration, numerical instabilities arise on the 
computed free surface if a filtering scheme is not used. In particular, it  has been found 
that, if linear filtering is not used in conjunction with DEABM, rather large step sizes 
are chosen and the computed free surface is not smooth. The numerical filtering 
scheme, which involves filtering the (2, y)-parameterization of the free surface and 
the vortex strength along the free surface, is employed immediately after the 
predictor in DEABM in each timestep. Filtering was discussed by Shapiro (1975) and 
has been used by Longuet-Higgins & Cokelet (1976) and Haussling & Coleman (1979) 
to eliminate numerical instabilities on a free surface. When a solution was recomputed 
using the fourth-order fixed-step method with a timestep of about the same size as 
used by DEABM and with smoothing between each timestep, very little difference 
was noticed. Thus, the procedure involving DEABM produces solutions in agreement 
with the solutions from the fixed-order, fixed-step method if an appropriate step size 
is chosen. 

A numerical check of the accuracy of the computations is obtained from comparing 
the calculated rate at which the total energy in the fluid is changing with the 
calculated rate at which work is performed on the fluid by the body. The total energy 
in the fluid is normalized by p V R 2  and is the sum of the potential energy of the fluid, 
given by 

=Y (0 PEE- yk(e’) z,(e’) d e ’ - z  
Fr2 ’ 

6 F L I  182 
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and the kinetic energy in the fluid, given by 

In each of these two equations, the first term is a free-surface integral in which n2 + in, 
is the unit normal vector directed away from the fluid region. These terms vanish 
in the rigid-wall case. The fluid velocity $x-iq5, on the free surface in the first integral 
of (42) is the velocity a"* of (21). The second term in (42) is a body integral with the 
unit normal vector directed into the fluid region. The fluid velocity on the body in 
this integral is obtained by differentiating (19), or (31) for the rigid-wall case, with 
respect to z and taking the limit as z approaches the body from inside the fluid. The 
potential $ on the free surface and on the cylinder may also be obtained from (19) 
or (31). The rate at which energy is supplied to the fluid is equal to the rate of work 
done by the body on the fluid. It is normalized by pVR and given by the equation 

The dynamic pressure pd in this equation is obtained, after accounting for the fact 
that the body is moving, by the formula 

Here the first derivative on the right-hand side of the equation is the derivative of 
$ with respect to t for fixed 8. It is calculated from a formula based on (19) or (31). 
All of these relations involve integrals that are evaluated from formulae based on 
trapezoidal quadrature. The total energy is computed a t  fixed intervals of time and 
then numerically differentiated with respect to time. The result of the numerical 
differentiation is compared with the calculated rate at  which work is performed on 
the fluid. 

4. Results 
The method just described has been used to solve the free-surface flow problem 

for four cases in which 1/Fr2 = 0.5, 5.0, 25.0, and 100.0 and the rigid-wall problem. 
Equations (22), (23), and (32) for ay/at and acr/at are Fredholm integral equations 
of the second kind. The discretized forms of these equations are solved iteratively 
using their convergent Neumann series (Baker et al. 1981). For the free-surface cases, 
separate global error criteria were used to test for the convergence of ay,/at and 
acr,/at. The criteria were obtained experimentally and were such that the difference 
in two successive iterates was nearly equal to the limit in numerical accuracy that 
could be attained with this spacing of points on the free surface and cylinder. In  
particular, the root mean square of the change in two successive iterates had to be 
less than prescribed tolerances. The prescribed tolerances were initially equal to 
5 x 
was used initially. The tolerances were increased by 10 yo each time the number of 
iterations exceeded 15, which usually indicated that ay,/at or acr,/at had become 
relatively large. In  most cases, the tolerances were not increased until the cylinder 
came very close to the free surface. For the rigid-wall case, a local error criterion was 
used at each point ; the absolute value of the difference in two successive iterates had 

except in the case of 1/Fr2 = 100 when the more stringent tolerance 5 x 
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FIQURE 2. Streamlines = -0.9, -0.8, ..., 0.9 at t = 4.8 for 1/FP = 0.5. 

to be less than times the absolute value of the latest iterate a t  each 
point. 

For the case 1/Fr2 = 0.5 both the variable-step, variable-order integrator DEABM 
and the fixed-step, fixed-order method were used. For DEABM, the time- 
discretization error specified for 2- and y-positions on the free surface and on the 
cylinder was a Combination of an absolute and a relative error. In  particular, the error 
estimated by DEABM at each point had to be less than lov5 plus times the 
absolute value of the computed solution at the point. The same error criterion was 
used for the time-advancement of the source strength g on the cylinder and the vortex 
strength y on the free surface. In  this particular case of 1/Fr2 = 0.5, the global error 
tolerance for ayj/at was maintained at 5 x whereas the global error tolerance 
for aa,/at was increased gradually from 5 x fort > 5 after being fixed 
up to that time. Even with such necessary relaxation of the convergence criterion 
for acr,Jat, the rate of change of energy with respect to time and the rate at which 
work was performed on the fluid remained in good agreement. The timestep chosen 
by DEABM was 0.16 for t between 1.5 and 3.5. For larger times, the step size was 
gradually decreased to 0.04 at t = 5.5. The order of the method was four at early 
times, eight near t = 4, and five near the end of the calculation. With this information, 
the calculation was repeated using the fixed-step, fourth-order Adams-Bashforth- 
Moulton scheme and a timestep of 0.01. It was found that the calculated energy in 
the fluid and the calculated rate of work performed on the fluid by the cylinder were 
unchanged in the four most significant digits. Thus, the methods produced results 
in agreement with one another. 

Figures 2 4  show the free surface, the cylinder, and streamlines in the fluid about 
the cylinder for three times as the cylinder approaches the free surface. These 
correspond to the times 4.8, 5.3, and 5.8. The plotted streamlines are contour lines 
for $ equal to 0.0, 0.1, ..., 0.9 in the right-hand half of each figure and the negative 
of these values in the left-hand half of each figure. The computation could not be 
continued accurately much beyond t = 5.8 because after this time the distance 

plus 

to 6.7 x 

6-2 
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FIGURE 3. Streamlines + = -0.9, -0.8, ..., 0.9 at t = 5.3 for l/Fr2 = 0.5. 
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FIGURE 4. Streamlines + = -0.9, -0.8, ..., 0.9 at t = 5.8 for l/Fra = 0.5. 

X 

between the free surface and the cylinder contour becomes less than the spacing 
between the vortices on the free surface and the spacing between the sources on the 
cylinder contour. When this happens, local effects of the individual sources and 
vortices predominate in the region between the cylinder and the free surface. This 
is the case of motion in which the final velocity of the rising cylinder is largest and 
the ratio of the inertial forces to the gravitational force is quite large. The large 
inertial forces are reflected in the appearance of the streamlines which resemble, 
especially at the earlier times, those of a cylinder moving at constant speed in an 
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TOP 0 (degrees) Bottom 

FIGURE 5. Dynamic pressure on the cylinder at t = 4.8, 5.3, and 5.8 for l/Fra = 0.5 and for an 
infinite fluid domain. 

infinite fluid. The free surface is pushed away rapidly by the flow, does not have time 
to respond much to the restoring influence of gravity, and hence exerts a minor 
influence on the streamlines. 

Figure 5 presents the dynamic pressure on the cylinder for these three times and 
the pressure on a steadily moving cylinder in an infinite fluid. For the earliest time, 
the pressure distribution resembles the pressure distribution for the case of a cylinder 
moving in steady motion in an infinite fluid. At this time the pressure exhibits an 
up/down symmetry in addition to the right/left symmetry which is inherent. At later 
times the up/down symmetry is lost. The pressure is increasing with time at every 
point on the cylinder and forms a relatively sharp peak at  6 = 270', the lowest point 
on the cylinder. The minima on either side of this peak have moved closer to 
6 = 270'. This seems to reflect the fact that an increasingly greater portion of the 
cylinder is surrounded by a thin layer of fluid between the free surface and the 
cylinder, as can be seen in figure 4. 

Figures 6-8 present the cylinder, the free surface, and the streamlines at the times 
4.0,4.24, and 4.52 as the cylinder moves to the free surface with a speed such that 
~ / F T ~  = 5.0. The same values of the stream function are plotted as for the previous 
case. The computation has again been carried out to the point at which the distance 
between the free surface and the cylinder is about equal to the spacing between 
successive vortices on the free surface and successive sources on the cylinder contour. 
In this case the fourth-order fixed-step method was used after an experimental 
computation had been performed with DEABM. For 0 < t < 3.8, the timestep was 
0.02, and for larger times it was 0.01. A noticeable difference between the results for 
this speed and for the previous speed is that in this case the streamlines are deflected 
downward by the free surface from those streamlines corresponding to a circular 
cylinder moving steadily in an unbounded fluid. Also, the free surface is not disturbed 
as much by the rising cylinder for l /F r2  = 5.0. This is a reflection of the relatively 
stronger acceleration of gravity compared with inertial forces in this case. Since the 
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FIQURE 6. Streamlines @ = -0.9, -0.8, ..., 0.9 at t = 4.0 for l/Fr2 = 5.0. 

5.0. 

body is rising more slowly, the restoring force of gravity has time to act  and prevent 
the free surface from becoming highly distorted. Gravity wave motion is apparent 
in the figures. A plot of the dynamic pressure distribution on the cylinder is depicted 
in figure 9 for t = 4.0, 4.24, and 4.52 and for the case of a steadily moving cylinder 
in an infinite fluid. In this figure, as the cylinder nears the free surface, the pressure 
at  the closest point to the free surface (0 = 90") is increasing and deviating 
considerably from that for the cylinder in an infinite fluid. At  the point farthest from 
the free surface the pressure changes only very little from the infinite-fluid pressure. 
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FIQURE 8. Streamlines $ = -0.9, -0.8, ..., 0.9 at t = 4.52 for 1/F9 = 5.0. 
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FIQURE 8. Streamlines $ = -0.9, -0.8, ..., 0.9 at t = 4.52 for 1/F9 = 5.0. 
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FIGURE 9. Dynamic pressure on the cylinder at t = 4.0, 4.24, and 4.52 for 1/F@ = 5.0 and for 
an infinite fluid domain. 

The final case for which results are presented in the form of contour plots of the 
stream function is for l /Frz  = 25. In  this case the fourth-order, fixed-step method 
was used again. For 0 < t < 4.0 the timestep used was 0.02; for larger times it was 
0.01. The global convergence criteria for both ay,/at and acr,/at were 5 x at all 
times for this case. Of the three cases presented so far, this is the case of slowest motion 
of the cylinder. Figures 10-12 present the free surface, the cylinder, and the 
streamlines for t = 3.76,4.04, and 4.24. As before, the streamlines are plotted for ~ 
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FIQURE 10. Streamlines @ = -0.9, -0.8, ..., 0.9 at t = 3.76 for 1/FP = 25.0. 
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FIQURE 11. Streamlines @ = -0.9, -0.8, ..., 0.9 a t  t = 4.04 for 1 / W  = 25.0. 
X 

equal to -0.9, -0.8, ..., 0.9. The results indicate that the free surface is scarcely 
deflected by the rising cylinder and that the streamlines deviate considerably from 
the streamlines for steady-state movement of a circular cylinder in an infinite fluid. 
The flow in this case is very close to that for the cylinder approaching a rigid wall. 
Figure 13 shows the variation of the dynamic pressure on the cylinder as a function 
of 0 for t = 3.76,4.04, and 4.24. For this case the pressure near 8 = 90°, the topmost 
point on the cylinder, is increasing rapidly to form a pronounced peak, whereas over 
much of the cylinder the pressure oscillates near the infinite-fluid pressure. Evidence 
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FIGURE 12. Streamlines @ = -0.9, -0.8, ..., 0.9 at t = 4.24 for l/F@ = 26.0. 
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FIQURE 13. Dynamic pressure on the cylinder at t = 3.76,4.04, and 4.24 for l / F P  = 25.0 and 
for an infinite fluid domain. 

of this oscillation can be seen at the bottom of the cylinder, where at t = 4.24, the 
pressure is approaching the pressure for the infinite-fluid case which it was near at 
earlier time. At the sides of the cylinder the pressure is moving away from that which 
is expected for a steadily moving cylinder in an infinite fluid. 

Similar calculations have been performed for the circular cylinder approaching a 
rigid wall. The computed pressure distribution on the cylinder at t = 2.5, 3.0, 3.5, 
and 4.0 is depicted in figure 14 together with the pressure distribution on a steadily 
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FroURE 14. Dynamic pressure on the cylinder at t = 2.5, 3.0, 3.5, and 4.0 for a rigid wall in 
place of the free surface and for the case of an infinite fluid domain. 

moving cylinder in an infinite fluid. A t  the earliest time the pressure is not far from 
the pressure on the cylinder in an infinite fluid. As the cylinder moves closer to the 
free surface, the pressure at the topmost point on the cylinder rises to a sharp peak, 
decreases slightly a t  the sides of the cylinder, and remains essentially unchanged a t  
the bottom of the cylinder. The behaviour of the pressure distribution is similar to 
the behaviour of the pressure distribution depicted in figure 13 for the free-surface 
flow in which 1/Fr2 = 25.0. For that free-surface flow problem, the pressure peak on 
top of the cylinder is not as pronounced and the pressure on the bottom of the cylinder 
is more variable. 

Another calculation has been performed for a free-surface flow in which the ha1  
speed of approach to the free surface is such that 1/Fr2 = 100. The streamlines are 
not presented for this case since they are very similar to those for l/F? = 25. The 
dynamic force as a function of time for all four free-surface flow problems and the 
rigid-wall problem is depicted in figure 15. For 0 < t < 1, the period during which 
the cylinder is undergoing acceleration from rest, the computed force is essentially 
equal to the acceleration reaction experienced by a cylinder accelerating in an infinite 
fluid (Batchelor 1967). In the high-speed case (1 /Fr2  = 0.5) the force is essentially 
zero after the acceleration period as for a body in an infinite fluid. As the body nears 
the free surface a downward force then develops and is increasing in strength at the 
termination of the calculations. Thus this inviscid flow theory predicts a monotoni- 
cally increasing resistance when a cylinder is raised rapidly to a free surface at a 
constant speed. The force curves for the slower speed cases exhibit similar behaviour 
except that they show oscillations in time due to the surface wave motion. For 
1/Fr2 = 25 and 100, there are time intervals during which the force is upward, a 
negative resistance. With decreasing Froude number the oscillations increase in 
frequency and the force curves approach and oscillate about the rigid-wall force. 

The free-surface wave motion is depicted in figure 16. This figure shows the height 
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FIGURE 15. Dynamic force on the cylinder versus time. 
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FIGURE 16. Free-surface elevation directly above the cylinder versus time. 

of the free surface directly above the cylinder as a function of time for the four speeds 
of approach. Whereas the high-speed approach shows no wave motion, the other 
curves do show some vertical oscillation of the free surface. The period of these 
oscillations decreases as the Froude number decreases. The amplitude increases at 
first and then decreases. When the cylinder is very close to the free surface, the free 
surface abruptly rises. In  the slow-speed approach, the calculations had to be 
terminated before the rise because it occurs only after the cylinder comes extremely 
close to the surface. 
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FIQURE 17.  Dynamic pressure on the top of the circular cylinder (6' = 90') versus time. 

Figures 17 and 18 show the pressure at  the top and the bottom of the cylinder as 
functions of time for the four cases of free-surface flow and for the case of flow when 
the free surface is replaced by a rigid wall. From figure 17 one can see that in the 
high-speed approach the pressure remains very close to the pressure for the cylinder 
in an infinite fluid (pd = 0.5). At the slow-speed extreme, obtained by replacing the 
free surface by a rigid wall, the pressure begins to rise gradually and then rises 
abruptly as the cylinder approaches the wall. For intermediate Froude numbers, the 
pressure oscillates before it experiences the final abrupt rise. In figure 18, one can 
see that the pressure at the bottom of the cylinder in the high-speed approach is not 
much different from the pressure in the rigid-wall case. Both are near the pressure 
at that point on a cylinder in an infinite fluid (pd = 0.5), and both show a gradual 
rise as a function of time. The pressure at  the bottom of the cylinder at intermediate 
Froude numbers shows the same oscillatory behaviour as at  the top of the cylinder. 
At  both the top and the bottom of the cylinder, the pressure oscillations approach 
the pressure for the rigid-wall case and the frequency of oscillation increases with 
decreasing Froude number. 

For these flows, the degree of agreement of the calculated rate of change of the 
total energy in the fluid with the calculated rate a t  which work is performed on 
the fluid by the cylinder was used as an indicator of the numerical accuracy. For the 
rigid-wall case, these two quantities were within 2 yo of one another when 0 < t < 3. 
The discrepancy increased to 3.5 yo at t = 4 near the end of the calculation. In  all the 
free-surface cases, the numerical error was so small that the computed rate of change 
of energy in the fluid was close to the calculated rate a t  which work was performed 
by the body on the fluid. For the case in which 1/Fr2 = 0.5, the difference in these 
two quantities remained small enough so that even near the end of the calculation, 
at t = 5,  they were only about 2% apart. For slower speeds of approach to the free 
surface, the difference in the two quantities was greater, and the two quantities 
oscillated about one another. Even for 1/Fr2 = 100.0, the case in which the 
discrepancy was greatest, the difference between the two quantities averaged only 
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FIQURE 18. Dynamic pressure on the bottom of the circular cylinder (0 = 270") versus time. 

5 % although at one time i t  was as high as 15 %. The timestep was halved, but the 
computed rate of change of the total energy in the fluid and the computed rate of 
change of the work performed on the fluid by the cylinder did not change significantly. 
Thus this error is not due to the time integration, but is due to inadequate spatial 
resolution of small-amplitude, short-wavelength waves which can contain significant 
energy at low speeds. 

5. Summary 
The problems of the flow about a circular cylinder rising to a free surface and a 

rigid wall have been solved numerically. Streamlines and pressures have been used 
to compare the approach to a free surface with the approach to a rigid wall and to 
motion in an infinite fluid. It has been shown that the low-speed approach to the free 
surface is essentially the same as the approach to a wall while the high-speed approach 
is similar to motion in an infinite fluid. At intermediate speeds surface wave motion 
is evident. In all cases, the cylinder experiences a growing downward force as it nears 
the free surface or wall except that short periods of upward force occur when wave 
motion is significant. 
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